精英家教网 > 初中数学 > 题目详情
(2010•荆州)如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.

【答案】分析:利用旋转的性质和正方形的性质得出△OBM≌△OFN,从而证明猜想正确.
解答:解:猜想:BM=FN.(2分)
证明:在正方形ABCD中,BD为对角线,O为对称中心,
∴BO=DO,∠BDA=∠DBA=45°,
∵△GEF为△ABD绕O点旋转所得,
∴FO=DO,∠F=∠BDA,
∴OB=OF,∠OBM=∠OFN,(4分)
在△OMB和△ONF中
∴△OBM≌△OFN,(6分)
∴BM=FN.(7分)
点评:本题综合考查了旋转的性质和正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《四边形》(08)(解析版) 题型:解答题

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(13)(解析版) 题型:解答题

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省荆州市中考数学试卷(解析版) 题型:解答题

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省荆州市中考数学试卷(解析版) 题型:填空题

(2010•荆州)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是    度.

查看答案和解析>>

同步练习册答案