精英家教网 > 初中数学 > 题目详情

如图,反比例函数数学公式(k≠0)的图象与正比例函数y2=-2x的图象交于A、B两点,过B作BC⊥y轴,垂足为C,已知S△BOC=4.求:
(1)反比例函数数学公式的解析式;
(2)观察图象,当x在什么取值范围内时y1>y2成立?

解:(1)由题意设B(a,-2a),a>0,
∴OC=2a,BC=a,
∵S△BOC=•2a•a=4,即a2=4,
∴a=2,即B(2,-4),
将B(2,-4)代入反比例解析式得:k=-8,
则反比例解析式为y1=-
(2)由对称性得到A(-2,4),
根据图象得:当-2<x<0或x>2时,y1>y2
分析:(1)由B在正比例函数图象上,设B(a,-2a),a>0,进而得出OC与BC的长,由三角形BOC的面积为4列出关于a的方程,求出方程的解得到a的值,确定出B坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;
(2)由对称性求出A的坐标,由A与B横坐标及函数图象,即可求出满足题意x的范围.
点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求反比例解析式,利用了数形结合的思想,熟练掌握数形结合思想是解本题第二问的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
与一次函数y=ax的图象交于两点A、B,若A点坐标为(2,1),则B点坐标为
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
k
x
(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<
k
x
时,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2
x
在第一象限的图象上有一点P,PC⊥x轴于点C,交反比例函数y=
1
x
图象于点A,PD⊥y轴于点D,交y=
1
x
图象于点B,则四边形PAOB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
的图象经过A、B两点,点A、B的横坐标分别为2、4,过A作AC⊥x轴,垂足为C,且△AOC的面积等于4.
(1)求k的值;
(2)求直线AB的函数值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积;
(4)在x轴的正半轴上是否存在一点P,使得△POA为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案