精英家教网 > 初中数学 > 题目详情

如图,已知AB为⊙O的弦,直径MN与AB相交于⊙O内,MC⊥AB于C,ND⊥AB于D,若MN=20,AB=数学公式,则MC-ND=________.

4
分析:设AB、NM交于H,做OE⊥AB于E,连接OB,利用垂径定理及勾股定理可求出OE,再推△OEH∽△MCH∽△NDH,然后就可利用OH表示MC、ND,从而可求出答案.
解答:解:设AB、NM交于H,做OE⊥AB于E,连接OB,
∵MN是⊙O的直径,且MN=20,弦AB的长为8
∴AE=BE=4,OE==2,
∵MC⊥AB于C,ND⊥AB于D,OE⊥AB于E,
∴MC∥OE∥DN
∴△OEH∽△MCH∽△NDH,
=,即=
=,即=
(MC-DN)=2
∴MC-DN=4.
故答案为4.
点评:本题考查了垂径定理以及相似三角形的判定和性质,正确添加辅助线是解题的关键.解决与弦有关的问题,往往要作弦的弦心距.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案