精英家教网 > 初中数学 > 题目详情
(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
【小题1】(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
【小题2】(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。




【小题1】(1)证明:如图I,分别连接OE、0F
∵四边形ABCD是菱形
∴AC⊥BD,BD平分∠ADC.AD=DC=BC
∴∠COD=∠COB=∠AOD=90°.
∠ADO=∠ADC=×60°=30°
又∵E、F分别为DC、CB中点
∴OE=CD,OF=BC,AO=AD
∴0E=OF=OA  ∴点O即为△AEF的外心
【小题2】(2)
①猜想:外心P一定落在直线DB上。
证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,P J⊥AD于J
∴∠PIE=∠PJD=90°,∵∠ADC=60°
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°
∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,∴∠IPE=∠JPA
∴△PIE≌△PJA, ∴PI=PJ
∴点P在∠ADC的平分线上,即点P落在直线DB上。
为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心
解法一:如图3.设MN交BC于点G
设DM=x,DN=y(x≠0.y≠O),则 CN=
∵BC∥DA ∴△GBP∽△MDP.∴BG=DM=x.

∵BC∥DA,∴△NCG∽△NDM
,∴

,即
其它解法略。解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)

已知:AB是⊙O的直径,弦CDAB于点GE是直线AB上一动点(不与点ABG重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.

(1)如图1,当点E在直径AB上时,试证明:OE·OPr2

(2)当点EAB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2011年滨海新区大港初中毕业生学业考试第一次模拟试卷数学 题型:解答题

(本题满分12分)已进入汛期,7年级1班的同学到水库调查了解汛情。水库一
共有10个泄洪闸,现在水库水位已超过安全线,上游的河水仍以一个不变的速度流入水库。
同学们经过一天的观察和测量,做了如下记录:上午打开一个泄洪闸,在2小时内水位继续
上涨了0.06米;下午再打开2个泄洪闸后,4小时内水位下降了0.1米。目前水位仍超过安
全线1.2米。
(1)如果打开5个泄洪闸,还需几个小时水位降到安全线?
(2)如果防汛指挥部要求在6小时内使水位降到安全线,应该再打开几个泄洪闸?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省宿迁市)九年级第二次联考数学试卷(解析版) 题型:解答题

(本题满分12分)

已知:如图,为平行四边形ABCD的对角线,的中点,于点,与分别交于点

求证:⑴

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省苏州市九年级10月月考数学卷 题型:解答题

(本题满分12分)已知,AB为⊙O 的直径,点E 为弧AB 任意一点,如图,AC平分∠BAE,交⊙O于C ,过点C作CD⊥AE于D,与AB的延长线交于P.

⑴ 求证:PC是⊙O的切线.⑵ 若∠BAE=60°,求线段PB与AB的数量关系.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省扬州市九年级第一学期期末考试数学卷 题型:解答题

(本题满分12分)

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.

 

 

 

 

 

 

 

 

1.(1)填空:菱形ABCD的边长是      、面积是    、  高BE的长是     ;

2.(2)探究下列问题:

若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时

②  △APQ的面积S关于t的函数关系式,以及S的最大值;

3.(3)在运动过程中是否存在某一时刻使得△APQ为等腰三角形,若存在求出t的值;若不存在说明理由.

 

查看答案和解析>>

同步练习册答案