精英家教网 > 初中数学 > 题目详情
已知如图,点C在以AB为直径的⊙O上,点D在AB 的延长线上,∠BCD=∠A。
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E,若CE=2,cosD=,求⊙O的半径。
解:(1)连接CO,
∵AB是⊙O直径,
∴∠1+∠OCB=90°,
∵AO=CO,
∴∠1=∠A,
∵∠5=∠A,
∴∠5+∠OCB=90°,
即∠OCD=90°,
∴OC⊥CD,
又∵OC是⊙O半径,
∴CD为⊙O的切线。
(2)∵OC⊥CD于C,
∴∠3+∠D=90°,
∵CE⊥AB于E,
∴∠3+∠2=90°,
∴∠2=∠D,
∴cos∠2=cosD,
在△OCE中,∠OEC=90°,
∴cos∠2=CE/CO,
∵cos∠D= 4/5,CE=2,
∴2/CO=4/5,
∴CO=5/2,
⊙O的半径为5/2。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,直径AB和弧BC交于点D,已知AB=6,则图中阴影部分的面积和周长分别等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E,若CE=2,cosD=
45
,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•巴中)已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥A0,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,O).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛阳一模)已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,CD为⊙O的切线,∠D=32°,则∠A的度数为
29°
29°

查看答案和解析>>

同步练习册答案