精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.
(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.
(1)将点A、点B的坐标代入可得:
a+b-3=0
9a-3b-3=0

解得:
a=1
b=2


(2)抛物线的解析式为y=x2+2x-3,直线y=t,
联立两解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵动直线y=t(t为常数)与抛物线交于不同的两点,
∴△=4+4(3+t)>0,
解得:t>-4;

(3)∵y=x2+2x-3=(x+1)2-4,
∴抛物线的对称轴为直线x=-1,
当x=0时,y=-3,∴C(0,-3).
设点Q的坐标为(m,t),则P(-2-m,t).
如图,设PQ与y轴交于点D,则CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD△CPD,
DQ
DC
=
DC
PD
,即
m
t+3
=
t+3
m+2

整理得:t2+6t+9=m2+2m,
∵Q(m,t)在抛物线上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化简得:t2+5t+6=0
解得t=-2或t=-3,
当t=-3时,动直线y=t经过点C,故不合题意,舍去.
∴t=-2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为
9
2
,这个二次函数的解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=
1
18
x2-
4
9
x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<
9
2
时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,
3
).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=x2+2mx+m2-4的图象与x轴的负半轴相交于A、B两点(点A在左侧),一次函数y=2x+b的图象经过点B,与y轴相交于点C.
(1)求A、B两点的坐标(可用m的代数式表示);
(2)如果?ABCD的顶点D在上述二次函数的图象上,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD的长AB=5cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

同步练习册答案