精英家教网 > 初中数学 > 题目详情
如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6.
(1)求点C的坐标.
(2)当x取何值时y1>y2
(3)求△COB的面积.
分析:(1)解由两直线的解析式y=x和y=-2x+6所组成的方程组即可得到C点坐标;
(2)观察函数图象得到当x>3时,函数y1=x的图象都在函数y2=-2x+6的图象的上方,即有y1>y2
(3)先利用y2=-2x+6求出B点坐标,得到OB的长,而△COB的OB边上的高等于C点的纵坐标,然后利用三角形面积公式即可.
解答:解:(1)解方程组
y=x
y=-2x+6
x=2
y=2

所以C点坐标为(2,2);

(2)当x>2时y1>y2

(3)对于y=-2x+6,令y=0,则-2x+6=0,解得x=3,
所以B点坐标为(3,0),
所以△COB的面积=
1
2
×3×2=3.
点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了观察图象的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,直线BC与x轴交于点B,直线BA与直线OC相精英家教网交于点A.
(1)当x取何值时y1>y2
(2)当直线BA平分△BOC的面积时,求点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2
(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
(3)当x为何值时,直线m平分△COB的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标;
(2)当x为何值时,直线m平分△COB的面积?

查看答案和解析>>

同步练习册答案