精英家教网 > 初中数学 > 题目详情
如图,从下列图形中选择四个拼图板,可拼成一个矩形,正确的选择方案为
 
(填序号)
精英家教网
分析:根据矩形的判定,有三个是直角的四边形是矩形.
解答:精英家教网解:根据矩形的判定,有三个是直角的四边形是矩形,由①③④⑤刚好能组成一个四个角都是直角的四边形.
故答案为:①③④⑤.
点评:本题考查的是矩形的判定,是一道几何结论开放题,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.
练习册系列答案
相关习题

科目:初中数学 来源:2012年人教版七年级下第七章第三节多边形及其内角和(1)练习卷(解析版) 题型:解答题

在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

(1)如图1,请根据下列图形,填写表中空格:

 

      正多边形边数

  3

  4

  5

  6

 …

 

正多边形每个内角的度数

 

 

 

 

 

 

(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?

(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.

 

查看答案和解析>>

同步练习册答案