精英家教网 > 初中数学 > 题目详情

已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD相交于点E,BD⊥CD,AB=12,cot∠ADB=数学公式
求:(1)∠DBC的余弦值;
(2)DE的长.

解:(1)∵Rt△ABD中,cot∠ADB=
=
则AD=16,
∴BD===20,
∵AD∥BC,
∴∠DBC=∠ADB,
∴cos∠DBC=cos∠ADB===
(2)在Rt△BCD中,cos∠DBC=
=
解得:BC=25,
∵AD∥BC,
==
=
∴DE=×BD=×20=
分析:(1)根据cot∠ADB=,可求出AD的长度,在Rt△ABD中利用勾股定理求出BD,继而可得出∠DBC的余弦值;
(2)在Rt△BDC中,由(1)的答案可求出BC的长度,再由平行线分线段成比例的知识可求出DE的长.
点评:本题考查了梯形、勾股定理及平行线分线段成比例的知识,解答本题的关键是熟练掌握解直角三角形的方法,能正确表示角的三角函数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案