精英家教网 > 初中数学 > 题目详情

已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

解:(1)∵OAOC的长是x2-5x+4=0的根,OA<OC

OA=1,OC=4

∵点Ax轴的负半轴,点Cy轴的负半轴

A(-1,0)  C(0,-4)           

∵抛物线的对称轴为

∴由对称性可得B点坐标为(3,0)

ABC三点坐标分别是:A(-1,0),B(3,0),C(0,-4)

(2)∵点C(0,-4)在抛物线图象上

A(-1,0),B(3,0)代入

解之得

∴ 所求抛物线解析式为:

(3)根据题意,,则

在Rt△OBC中,BC==5

,∴△ADE∽△ABC

过点EEFAB于点F,则sin∠EDF=sin∠CBA=

EF=DE==4-m

SCDE=SADC-SADE

=(4-m)×4(4-m)( 4-m

=m2+2m(0<m<4)

S=m-2)2+2, a=<0

∴当m=2时,S有最大值2.

∴点D的坐标为(1,0).  

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线与x轴交于A(-2,0)、B(4,0),与y轴交于C(0,4).
(1)求抛物线顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网抛物线y=ax2+bx+c的图象如图所示,已知该抛物线与x轴交于A、B两点,顶点为C,
(1)根据图象所给信息,求出抛物线的解析式;
(2)求直线BC与y轴交点D的坐标;
(3)点P是直线BC上的一点,且△APB与△DOB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线与x轴交于A(-1,0)、B两点,点B在x轴的正半轴上,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

如图1,已知:抛物线与x轴交于A,B两点,与y轴交于点C,经过B,C两点的直线是,连结AC.
(1)写出B,C两点坐标,并求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFG(顶点D,E,F,G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
[抛物线的顶点坐标是]

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线与x轴交于
点A(x1,0)、B(x2,0),且x1<1<x2
【小题1】求A、B两点的坐标(用a表示);
【小题2】设抛物线的顶点为C,求△ABC的面积;
【小题3】若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),
在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的
解析式及线段PQ的长的取值范围.

查看答案和解析>>

同步练习册答案