精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.

求证:AE2+BF2=EF2.

【答案】证明见解析

【解析】

过点AAM∥BC,交FD延长线于点M,连接EM,根据平行线的性质得到∠MAE=∠ACB=90°,∠MAD=∠B,通过“边角边”证明△ADM≌△BDF,则AM=BF,MD=DF,再根据“三线合一”得到EF=EM,Rt△AEM中利用勾股定理即可得证.

证明:过点AAM∥BC,交FD延长线于点M,连接EM,

∵AM∥BC,
∴∠MAE=∠ACB=90°,∠MAD=∠B,
∵AD=BD,∠ADM=∠BDF,
∴△ADM≌△BDF(SAS),
∴AM=BF,MD=DF,
又∵DE⊥DF,

∴EF=EM,
∴AE2+BF2=AE2+AM2=EM2=EF2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题背景:在△ABC中,AB、BC、AC三边的长分别为,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上:   

思维拓展:

(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别a、a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC,∠A=90°,DBC的中点,E,F分别在AB,AC,EDF=90°,连接EF,求证:BE2+CF2=EF2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.
(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为 , 若A为随机事件,则m的取值为
(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于xy的二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形相邻两边的长分别是xcm3cm,设长方形的面积为ycm2

1)试写出长方形的面积yx之间的关系式;

2)利用(1)中的关系式,求当x5cm时长方形的面积;

3)当x的值由4cm变化到12cm时,长方形的面积由   cm2变化到   cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.

查看答案和解析>>

同步练习册答案