精英家教网 > 初中数学 > 题目详情
(2004•江西)如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.
(1)BT是否平分∠OBA?证明你的结论;
(2)若已知AT=4,试求AB的长.

【答案】分析:(1)连接OT,AT是切线,则OT⊥AP,可以证明AB∥OT,得到∠TBA=∠BTO,再根据等边对等角得到∠OTB=∠OBT,就可以证出结论;
(2)过点B作BH⊥OT于点H,然后在Rt△OBH中,利用OB=5,BH=AT=4根据勾股定理求出OH,最后即可求出AB.
解答:解:(1)BT平分∠OBA,
证明:连接OT,
∵AT是切线,
∴OT⊥AP;
又∵∠PAB是直角,即AQ⊥AP,
∴AB∥OT,
∴∠TBA=∠BTO.
又∵OT=OB,
∴∠OTB=∠OBT.
∴∠OBT=∠TBA,即BT平分∠OBA;

(2)过点B作BH⊥OT于点H,则四边形OMBH和四边形ABHT都是矩形.
则在Rt△OBH中,OB=5,BH=AT=4,
∴OH===3,
∴AB=HT=OT-OH=5-3=2.
点评:本题主要考查了切线的性质定理,以及等角对等边等知识,此题的解题方法比较多,灵活性比较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2004•江西)如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.
(1)BT是否平分∠OBA?

(2)若已知AT=4,AB=
2
2

查看答案和解析>>

科目:初中数学 来源:2009年安徽省安庆市杨桥中学中考数学模拟试卷(解析版) 题型:解答题

(2004•江西)如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2,现把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.
(1)用含n°的代数式表示∠α的大小;
(2)当n°等于多少时,线段PC与MF平行?
(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2004年江西省南昌市中考数学试卷(解析版) 题型:解答题

(2004•江西)如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2,现把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.
(1)用含n°的代数式表示∠α的大小;
(2)当n°等于多少时,线段PC与MF平行?
(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2004年江西省南昌市中考数学试卷(解析版) 题型:填空题

(2004•江西)如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上.   

查看答案和解析>>

同步练习册答案