£¨2013•Àú³ÇÇøÈýÄ££©Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=kx+nÓëÅ×ÎïÏßy=ax2+bx-3½»ÓÚA£¨-2£¬0£©¡¢B£¨4£¬3£©Á½µã£¬µãPÊÇÖ±ÏßABÏ·½µÄÅ×ÎïÏßÉϵÄÒ»¶¯µã£¨²»ÓëµãA¡¢BÖØºÏ£©£¬¹ýµãP×÷xÖáµÄ´¹Ïß½»Ö±ÏßABÓÚµãC£¬×÷PD¡ÍABÓÚµãD£®
£¨1£©ÇóÖ±ÏßÓëÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÉèµãPµÄºá×ø±êΪm£®
¢ÙÓú¬mµÄ´úÊýʽ±íʾÏß¶ÎPDµÄ³¤£¬²¢Çó³öÏß¶ÎPD³¤µÄ×î´óÖµ£»
¢ÚÁ¬½áPB£¬Ïß¶ÎPC°Ñ¡÷PDB·Ö³ÉÁ½¸öÈý½ÇÐΣ¬ÊÇ·ñ´æÔÚÊʺϵÄmµÄÖµ£¬Ê¹ÕâÁ½¸öÈý½ÇÐεÄÃæ»ý±ÈΪ9£º10£¿Èô´æÔÚ£¬Ö±½Óд³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«AÓëB×ø±ê´úÈëy=kx+nÖÐÇó³ökÓënµÄÖµ£¬È·¶¨³öÖ±Ïß½âÎöʽ£»½«AÓëB×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÇó³öaÓëbµÄÖµ£¬¼´¿ÉÈ·¶¨³öÅ×ÎïÏß½âÎöʽ£»
£¨2£©¢ÙÉèÖ±ÏßABÓëxÖá½»ÓÚµãE£¬ÓÉCPÓëyÖáÆ½ÐУ¬µÃµ½¡ÏACP=¡ÏAEO£¬Çó³öAEÓëOAµÄ³¤£¬µÃ³ösin¡ÏAEOµÄÖµ£¬¼´Îªsin¡ÏACPµÄÖµ£¬ÓÉPµÄºá×ø±êΪm£¬·Ö±ð´úÈëÖ±ÏßÓëÅ×ÎïÏß½âÎöʽµÃµ½Á½¸ö×Ý×ø±êÖ®²îΪPCµÄ³¤£¬ÓÉPD=PCsin¡ÏACP±íʾ³öPD£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³öPDµÄ×î´óÖµ¼´¿É£»
¢Ú´æÔÚ£¬¹ýD×÷DF¡ÍCP£¬¹ýB×÷BG¡ÍPQ£¬½»PCÑÓ³¤ÏßÓëµãQ£¬±íʾ³öDFÓëBG£¬½ø¶ø±íʾ³öÈý½ÇÐÎDCPÃæ»ýÓëÈý½ÇÐÎBCPÃæ»ý£¬¸ù¾ÝÃæ»ýÖ®±ÈΪ9£º10Áгö¹ØÓÚmµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½âµÃµ½mµÄÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©½«A£¨-2£¬0£©£¬B£¨4£¬3£©´úÈëÖ±Ïßy=kx+nÖУ¬µÃ£º
-2k+n=0
4k+n=3
£¬
½âµÃ£º
k=
1
2
n=1
£¬
¡àÖ±Ïß½âÎöʽΪy=
1
2
x+1£»
½«A£¨-2£¬0£©£¬B£¨4£¬3£©´úÈëÅ×ÎïÏß½âÎöʽy=ax2+bx-3µÃ£º
4a-2b-3=0
16a+4b-3=3
£¬
½âµÃ£º
a=
1
2
b=-
1
2
£¬
¡àÅ×ÎïÏß½âÎöʽΪy=
1
2
x2-
1
2
x-3£»

£¨2£©¢Ù¡ßPC¡ÎyÖᣬ
¡à¡ÏACP=¡ÏAEO£¬
¶ÔÓÚÖ±Ïßy=
1
2
x+1£¬Áîy=0£¬µÃµ½x=-2£¬¼´AO=2£¬Áîx=0£¬µÃµ½y=1£¬¼´OE=1£¬
¸ù¾Ý¹´¹É¶¨ÀíµÃµ½AE=
5
£¬
¡àsin¡ÏACP=sin¡ÏAEO=
OA
AE
=
2
5
5
£¬
½«x=m´úÈëÖ±Ïß½âÎöʽµÃ£ºy=
1
2
m+1£»´úÈëÅ×ÎïÏß½âÎöʽµÃ£ºy=
1
2
m2-
1
2
m-3£¬
¡àCP=£¨
1
2
m+1£©-£¨
1
2
m2-
1
2
m-3£©=-
1
2
m2+m+4£¬
¡àDP=CP•sin¡ÏACP=£¨-
1
2
m2+m+4£©¡Á
2
5
5
=-
5
5
£¨m-1£©2+
9
5
5
£¬
¡ß-
5
5
£¼0£¬
¡àµ±m=1ʱ£¬DPµÄ×î´óֵΪ
9
5
5
£»
¢Ú´æÔÚ£¬
¹ýD×÷DF¡ÍCP£¬¹ýB×÷BG¡ÍPQ£¬½»PCÑÓ³¤ÏßÓëµãQ£¬
¡ßsin¡ÏACP=
2
5
5
£¬
¡àcos¡ÏACP=
5
5
£¬
ÔÚRt¡÷PDFÖУ¬DF=DP•sin¡ÏDPC=DP•cos¡ÏACP=
5
5
¡Á£¨-
1
2
m2+m+4£©¡Á
2
5
5
=-
1
5
£¨m2+2m-8£©£¬
ÓÖ¡ßBG=4-m£¬
¡à
S¡÷DCP
S¡÷BCP
=
1
2
DF•CP
1
2
BG•CP
=
DF
BG
=
-
1
5
(m2+2m-8)
4-m
=
m+2
5
£¬
µ±
S¡÷DCP
S¡÷BCP
=
m+2
5
=
9
10
ʱ£¬½âµÃ£ºm=
5
2
£»
µ±
S¡÷DCP
S¡÷BCP
=
m+2
5
=
10
9
ʱ£¬½âµÃ£ºm=
32
9
£®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶÓУº´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬×ø±êÓëͼÐÎÐÔÖÊ£¬¶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬Èñ½ÇÈý½Çº¯Êý¶¨Ò壬ͬ½ÇÈý½Çº¯Êý¼äµÄ»ù±¾¹ØÏµ£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ýÇ󷨣¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ÊǽⱾÌâµÚÒ»ÎʵĹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©·½³Ì×é
x-y=2
2x+y=4
µÄ½âÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©Èçͼ£¬ÒÑÖªÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏBAD=90¡ã£¬AD=2£¬AB=4£¬BC=5£¬µãPΪAB±ßÉÏÒ»¶¯µã£¬Á¬½ÓPC¡¢PD£¬Èô¡÷PCDΪֱ½ÇÈý½ÇÐΣ¬ÔòÂú×ãÌõ¼þµÄµãPÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©Èçͼ£¬ÔÚб±ß³¤Îª1µÄµÈÑüÖ±½ÇÈý½ÇÐÎOABÖУ¬×÷ÄÚ½ÓÕý·½ÐÎA1B1D1C1£»ÔÚµÈÑüÖ±½ÇÈý½ÇÐÎOA1B1ÖÐ×÷ÄÚ½ÓÕý·½ÐÎA2B2D2C2£»ÔÚµÈÑüÖ±½ÇÈý½ÇÐÎOA2B2ÖÐ×÷ÄÚ½ÓÕý·½ÐÎA3B3D3C3£»¡­£»ÒÀ´Î×öÏÂÈ¥£¬ÔòµÚn¸öÕý·½ÐÎAnBnDnCnµÄ±ß³¤ÊÇ
1
3n
1
3n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©£¨1£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨a+b£©£¨a-b£©+2a2£¬ÆäÖÐa=1£¬b=
2
£®
£¨2£©½â²»µÈʽ×飺
x-1
2
¡Ü1
x-2£¼4(x+1)
²¢°Ñ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©Èçͼ£¬ÒÑÖªµã£¨1£¬2£©ÔÚº¯Êýy=
k
x
£¨x£¾0£©µÄͼÏóÉÏ£¬¾ØÐÎABCDµÄ±ßBCÔÚxÕý°ëÖáÉÏ£¬EÊǶԽÇÏßAC¡¢BDµÄ½»µã£¬º¯Êýy=
k
x
£¨x£¾0£©µÄͼÏóÓÖ¾­¹ýA£¬EÁ½µã£¬µãEµÄ×Ý×ø±êΪm£®
£¨1£©ÇókµÄÖµ£»
£¨2£©ÇóµãAµÄ×ø±ê£¨ÓÃm±íʾ£©£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹ËıßÐÎABCDΪÕý·½ÐΣ¿Èô´æÔÚ£¬ÇëÇó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸