如图,∴P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.
(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.
解:(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB。∠DAP=∠BAP。
∵在△APB和△APD中,,
∴△APB≌△APD(SAS)。
(2)①∵四边形ABCD是菱形,∴AD∥BC,AD=BC。
∴△AFP∽△CBP。∴。
∵DF:FA=1:2,∴AF:BC=3:3。∴。
由(1)知,PB=PD=x,又∵PF=y,∴。
∴,即y与x的函数关系式为。
②当x=6时,,∴。
∵DG∥AB,∴△DFG∽△AFB。∴。∴。
∴,即线段FG的长为5。
解析试题分析:(1)由菱形的性质得到AB=AD,∠DAP=∠BAP,加上公共边AP=AP,根据SAS即可证得结论。
(2)①由△AFP∽△CBP列比例式即可得到y与x的函数关系式。
②由函数关系式求得PF的长,从而得到FB的长,由△DFG∽△AFB列比例式即可得到线段FG的长。
科目:初中数学 来源: 题型:解答题
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图(1),∆ABC为等边三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,点D在边BC上运动,边DF始终经过点A,DE交AC于点G.
(1)求证:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)设BD=x,若CG=,求x的值;
(3)如图2,当D运动到BC中点时,点P为线段AD上一动点,连接CP,将线段CP绕着点C逆时针旋转60°得到CP' ,连接BP',DP',
①求∠CBP'的度数;②求DP'的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由。
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G。
求证:BD⊥CF。
(3)在(2)小题的条件下, AC与BG的交点为M, 当AB=4,AD=时,求线段CM的长。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.
(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);
(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com