(1)证明:连接OB 如图1
∵AB=AD=AO,

∴∠DBA=∠D,∠ABO=∠AOB,
∵∠DBA+∠D+∠ABO+∠AOB=180°,
∴∠DBA+∠ABO=90°,
∴OB⊥BD,
∵点B在⊙O,
∴BD是⊙O的切线;
(2)解:过点B作BH⊥AE于H.如图2,
∵AB=AO,AO=OB,
∴AB=AO=OB,
∴△ABO为等边三角形,
∴∠AOB=60°,
∵∠AOB=2∠C,
∴∠C=30°,
∵BD是⊙O的切线,
∴BD⊥OB,∴∠DBO=90°,
∴∠D=30°,
∴OD=2OB,∵DB=

,
∴OB=2,
∴AB=2,
∵∠E=∠C,
∴∠E=30°,
∵∠ABE=105°,
∴∠BAE=45°,
∴∠ABH=∠BAE=45°
∴AH=BH,
设AH=BH=x,
∵在Rt△ABH中,sin∠BAH=

,
∴BH=AB•sin45°=2×

=

,
∴AH=

,
在Rt△ABH中,BE=2BH=

,
由勾股定理得:HE=

,
∴AE=

+

.
分析:(1)连接BO,根据三角形的内角和定理可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线;
(2)过点B作BH⊥AE于H,有(1)可知BD是⊙O的切线,设AH=BH=x,利用锐角三角函数出AH,再求勾股定理求出HE,进而求出AE 的值.
点评:本题综合考查了圆的切线的性质和判定、等边三角形的性质、勾股定理以及锐角三角函数等内容,是一个综合较强的题目.