精英家教网 > 初中数学 > 题目详情

三角形的一条中线是否将这个三角形分成面积相等的两个三角形?为什么?

答案:略
解析:

能.根据等底等高的两个三角形的面积相等的结论.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是
等底等高的三角形面积相等

规定;若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.根据此定义,在图1中易知直线为△ABC的等积直线.
(1)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M、N,请你判断直线l是否为该矩形的等积直线
(填“是”或“否”).在图2中再画出一条该矩形的等积直线.(不必写作法)
(2)如图3,在梯形ABCD中,直线l经过上下底AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线
(填“是”或“否”).
(3)在图3中,过M、N的中点O任作一条直线PQ分别交AD,BC于点P、Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是
等腰三角形的底边上的中线、底边上的高重合

查看答案和解析>>

科目:初中数学 来源:新课标教材导学  数学七年级(第二学期) 题型:044

三角形的一条中线是否将这个三角形分成面积相等的两个三角形?为什么?

查看答案和解析>>

同步练习册答案