精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.
(1)求证:BE是⊙O的切线;
(2)若BC=6,tanA=
23
,求⊙O的半径.
分析:(1)要证明BE是⊙O的切线,即可转化为证明∠ABE=90°即可;
(2)连接BD,有垂径定理和圆周角定理可求出DF的长,设OB=x,则OF=x-DF,再利用勾股定理即可求出x的值,即⊙O的半径.
解答:(1)证明:∵OD⊥BC
∴∠E+∠FBE=90°,
∵∠ADC=∠ABC,∠ADC=∠E,
∴∠ABC=∠E,
∴∠ABC+∠FBE=90°,
∴BE与⊙O相切;

(2)解:连接BD,
∵半径OD⊥BC,
∴弧BD=弧CD,
∴∠BCD=∠CBD,
∵∠A=∠BCD,
∴∠CBD=∠A,
∴tanA=tan∠CBD=
2
3

∵FC=BF=3,
∴DF=2,
在Rt△CFD中:设半径OB=x,OF=x-2,
∴x2=32+(x-2)2
解得:x=
13
4

∴⊙O的半径为
13
4
点评:本题考查了切线的判定定理、圆周角定理、垂径定理、勾股定理以及三角函数的综合应用,题目综合性很强,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案