精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是正方形,点E在BC上,DF⊥AE,垂足为F,请你在AE上确定一点G,使△ABG≌△DAF,请你写出两种确定点G的方案,并写出其中一种方案的具体作法和证明△ABG≌△DAF.
方案一:______;

方案二:(1)作法:
(2)证明:

解:方案:(一)过点B作BG⊥AE,垂足为G;

(二)在AE上截取AG=DF;

(三)作∠ABG=∠DAF交AE于点G;

(2)①如果是过点B作BG⊥AE,垂足为G,证明如下:
∵DF⊥AE,BG⊥AE,
∴∠DFA=∠AGB=90°
由题意知,∠ADF+∠DAF=90°,∠GAB+∠DAF=90°,
∴∠ADF=∠GAB.
∵四边形ABCD是正方形,
∴AD=AB,
在△ABG与△DAF中,
∠DFA=∠AGB=90°,∠ADF=∠GAB,AD=AB,
∴△ABG≌△DAF(AAS).
分析:方案一需根据正方形的性质和全等三角形的判定即可求出点G,
方案二需根据方案一的作法再进行证明即可.
点评:本题主要考查了正方形的性质,解题时要注意与全等三角形的判定相结合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案