分析 如图作AE⊥OB,CM⊥OB,AF⊥CM垂足分别为E、M、F,利用△AEB≌△AFC即可解决问题.
解答 解:如图作AE
⊥OB,CM⊥OB,AF⊥CM垂足分别为E、M、F.
∵∠AEM=∠EMF=∠AFM=90°,
∴四边形AEMF是矩形,
∴∠EAF=90°,AE=FM=2
∵∠BAC=90°,
∴∠EAF=∠BAC,
∴∠EAB=∠FAC,
在△AEB和△AFC中,
$\left\{\begin{array}{l}{∠EAB=∠FAC}\\{∠AEB=∠AFC}\\{AB=AC}\end{array}\right.$,
∴△AEB≌△AFC,
∴AE=AF=2,BE=CF=1,CM=3,
∴点C(3,-3).
故答案为C(3,-3).
点评 本题考查旋转的性质、全等三角形的判定和性质、矩形的判定和性质等知识,构造全等三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 110° | B. | 130° | C. | 120° | D. | 140° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com