| A. | $\frac{1}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{5}$ |
分析 由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径=$\frac{12+9-15}{2}$=3,求得直角三角形的面积和圆的面积,即可得到结论.
解答 解:∵AB=15,BC=12,AC=9,
∴AB2=BC2+AC2,
∴△ABC为直角三角形,
∴△ABC的内切圆半径=$\frac{12+9-15}{2}$=3,
∴S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$×12×9=54,
S圆=9π,
∴小鸟落在花圃上的概率=$\frac{9π}{54}$=$\frac{π}{6}$,
故选B.
点评 本题考查了几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半.同时也考查了勾股定理的逆定理.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 30,40 | B. | 45,60 | C. | 30,60 | D. | 45,40 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com