精英家教网 > 初中数学 > 题目详情

小明与小亮对等腰三角形都很感兴趣,小明说:“我知道有一种三角形,过它的一个顶点画一条直线可以将原来的等腰三角形分为两个等腰三角形.小亮说“你才知道一种啊!我知道好几种呢!”聪明的你知道几种呢?请你至少画出三种符合条件的形状不同的三角形,并标明顶角角度,不要求证明.

解:举例如下,如图所示

(1)AC=BC,∠ACB=90°,CD=AD=DB;
(2)AB=AC=CD,BD=AD;
(3)AB=AC,AD=CD=BC.
分析:分两种情况进行讨论,一是过顶角截等腰三角形的底边,二是过底角截等腰三角形的腰.
点评:本题考查了等腰三角形的性质;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,按要求解答问题:
如图1,在△ABC中,∠A=2∠B,且∠A=60度.小明通过以下计算:由题意,∠B=30°,∠C=90°,c=2b,a=
3
b,得a2-b2=(
3
b)2-b2=2b2=b•c.即a2-b2=bc.于是,小明猜测:对于任意的△ABC,当∠A=2∠B时,关系式a2-b2=bc都成立.
(1)如图2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;
(2)如图3,你认为小明的猜想是否正确?若认为正确,请你证明;否则,请说明理由;
(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的精英家教网长,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、小明、小亮对于等腰三角形都很感兴趣,小明说:“我知道有一种等腰三角形,过它的顶点作一条直线可以将原来的等腰三角形分为两个等腰三角形.”小亮说:“你才知道一种啊!我知道好几种呢!”聪明的你知道几种呢?(要求最少画出两种,标明角度,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.
你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.

查看答案和解析>>

同步练习册答案