精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是

【答案】2
【解析】解:如图,作直径AC,连接CP,
∴∠CPA=90°,
∵AB是切线,
∴CA⊥AB,
∵PB⊥l,
∴AC∥PB,
∴∠CAP=∠APB,
∴△APC∽△PBA,

∵PA=x,PB=y,半径为4,

∴y= x2
∴x﹣y=x﹣ x2=﹣ x2+x=﹣ (x﹣4)2+2,
当x=4时,x﹣y有最大值是2,
所以答案是:2.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设a1 , a2 , …,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1 , a2 , …,a2014中为0的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.

(1)求FM的长;
(2)连接AF,若sin∠FAM= ,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣ (x<0)的图象上,A、B的横坐标分别为
a、b.

(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;
(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:﹣24 +|1﹣4sin60°|+(π﹣ 0
(2)解方程:2x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知l1⊥l2 , ⊙O与l1 , l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1 , l2重合,AB=4 cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)
(1)如图①,连接OA、AC,则∠OAC的度数为°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 , A1 , C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度. 棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.
(1)求证:CE=CB;
(2)若AC=2 ,CE= ,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: , 可以使得△FDB与△ADE相似.(只需写出一个)

查看答案和解析>>

同步练习册答案