精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD,矩形EFGH均位于第一象限内,它们的边平行于x轴或y轴,其中,点A,E在直线OM上,点C,G在直线ON上,O为坐标原点,点A的坐标为(3,3),正方形ABCD的边长为1.
(1)直线ON的解析式是______;
(2)若矩形EFGH的周长为10,面积为6,则点F的坐标为______.

解:(1)∵A的坐标为(3,3),
∴直线OM的解析式为y=x,
∵正方形ABCD的边长为1,
∴C(4,2),
设直线ON的解析式为y=kx(k≠0),
∴2=4k,解得k=
∴直线ON的解析式为:y=x;

(2)设矩形EFGH的宽为a,则长为5-a,
∵矩形EFGH的面积为6,
∴a(5-a)=6,
解得a=2或a=3,
当a=2即EF=2时,EH=5-2=3,
∵点E在直线OM上,设点E的坐标为(e,e),
∴F(e,e-2),G(e+3,e-2),
∵点G在直线ON上,
∴e-2=(e+3),解得e=7,
∴F(7,5);
当a=3即EF=3时,EH=5-3=2,
∵点E在直线OM上,设点E的坐标为(e,e),
∴F(e,e-3),G(e+2,e-3),
∵点G在直线ON上,
∴e-3=(e+2),
解得e=8,
∴F(8,5).
故答案为:y=x;(7,5),(8,5).
分析:(1)先根据A的坐标为(3,3),正方形ABCD的边长为1得出直线OM的解析式,再求出C点的坐标利用待定系数法即可求出直线ON的解析式;
(2)设矩形EFGH的宽为a,则长为5-a,再根据面积为6即可得出a的值,由点E在直线OM上设点E的坐标为(e,e),由矩形的边长可用e表示出F、G点的坐标,再根据G点在直线ON上即可得出e的值,进而得出结论.
点评:本题考查的是一次函数综合题,根据题意得出直线ON的解析式是解答此题的关键,在解答(2)时要注意进行分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案