精英家教网 > 初中数学 > 题目详情
17.已知:如图,⊙O是△ABC的外接圆,$\widehat{AB}$=$\widehat{AC}$,点D在边BC上,AE∥BC,AE=BD.
(1)求证:AD=CE;
(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.

分析 (1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;
(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.

解答 证明:(1)在⊙O中,
∵$\widehat{AB}$=$\widehat{AC}$,
∴AB=AC,
∴∠B=∠ACB,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠B=∠EAC,
在△ABD和△CAE中,$\left\{\begin{array}{l}{AB=CA}\\{∠B=∠EAC}\\{BD=AE}\end{array}\right.$,
∴△ABD≌△CAE(SAS),
∴AD=CE;
(2)连接AO并延长,交边BC于点H,
∵$\widehat{AB}$=$\widehat{AC}$,OA为半径,
∴AH⊥BC,
∴BH=CH,
∵AD=AG,
∴DH=HG,
∴BH-DH=CH-GH,即BD=CG,
∵BD=AE,
∴CG=AE,
∵CG∥AE,
∴四边形AGCE是平行四边形.

点评 本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.平行四边形ABCD的两个顶点A、C在反比例函数y=$\frac{k}{x}$(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=$\sqrt{5}$ 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是$\frac{2}{3}$.
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是(  )
A.1<r<4B.2<r<4C.1<r<8D.2<r<8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是(  )
A.250米B.250$\sqrt{3}$米C.$\frac{500}{3}$$\sqrt{3}$米D.500$\sqrt{2}$米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.以下是龙湾风景区旅游信息:
旅游人数收费标准
不超过30人人均收费80元
超过30人每增加1人,人均收费降低1元,但人均收费不低于50元
根据以上信息,某公司组织一批员工到该风景区旅游,支付给旅行社2800元.从中可以推算出该公司参加旅游的人数为40.

查看答案和解析>>

同步练习册答案