精英家教网 > 初中数学 > 题目详情
12.已知反比例函数y=$\frac{1-k}{x}$的图象经过A(2,-4).
①求k的值.
②这个函数的图象在哪几个象限?y随x的增大怎样变化?
③画出函数的图象.
④点B(-2,4),C(-1,5)在这个函数的图象上吗?

分析 ①将已知点的坐标代入反比例函数的解析式即可求得k值;
②根据确定的k的符号判断其所在的象限和增减性;
③利用描点作图法作出图象即可;
④满足函数关系式即在,否则不在.

解答 解:①∵反比例函数y=$\frac{1-k}{x}$的图象经过点A(2,-4),
∴1-k=2×(-4)=-8;
解得:k=9;

②∵k=-8<0,
∴图象位于二、四象限,在每个象限内y随x的增大而增大;
③图象为:

④∵-2×4=-8、
-1×5=-5≠-8,
∴B(-2,4)在反比例函数的图象上,C(-1,5)不在反比例函数的图象上.

点评 本题考查了反比例函数的图象及性质,解题的关键是正确的求得反比例函数的解析式,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,BE平分∠ABF,DF⊥AB交AB于点D,AC⊥BF交BF于点C,AC,FD相交于点E,若∠F=30°,DE=1,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,是一个零件的形状,按规定∠A应等于90°,∠B与∠C分别是32°和27°,检测工人量得∠BDC=150°,问该零件是否合格?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是-5,点H对应数轴上的数是-1;
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,⊙O中,弦AB⊥CD于E,连接AC、OC、AD.

(1)如图1,求证:∠ACO=∠BAD;
(2)如图2,在(1)的条件下,连接BC,将射线CD沿CB翻折交⊙O于K,连接AK交CD于H.若CH=OC,AB=2$\sqrt{7}$,AH=4,求线段CB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.矩形ABCD的边AB、BC的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根.
(1)若矩形ABCD是正方形,求m的值.
(2)若矩形ABCD的面积为12时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知等腰△ABC中,AB=AC=2,腰AB上的高CD与另一腰的夹角为30°,则底边BC的长度为(  )
A.1或$\sqrt{3}$B.1或2$\sqrt{3}$C.2或$\sqrt{3}$D.2或2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D.则阴影部分面积为(结果保留π)(  )
A.24-4πB.32-4πC.32-8πD.24-2π

查看答案和解析>>

同步练习册答案