精英家教网 > 初中数学 > 题目详情

已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E.

(1)若BD是AC边上的中线,如图1,求的值;

(2)若BD是∠ABC的角平分线,如图2,求的值.

 

【答案】

(1);(2)2.

【解析】

试题分析:设AB=AC=1,CD=x,应用勾股定理和相似三角形的判定和性质,把用x来表示,

(1)若BD是AC的中线,则CD=AD,据此求出的值;

(2)若BD是∠ABC的角平分线,则由Rt△ABD∽Rt△EBC得,据此求出的值.

试题解析:设AB=AC=1,CD=x,则0<x≤1,BC=,AD=1-x.

在Rt△ABD中,BD2=AB2+AD2=1+(1-x)2=x2-2x+2.

由已知可得Rt△ABD∽Rt△ECD,

,即,∴.

,0<x≤1.

(1)若BD是AC的中线,则CD=AD=x=,得.

(2)若BD是∠ABC的角平分线,则Rt△ABD∽Rt△EBC,

,得,即,解得,.

.

考点:1.动点问题;2.等腰直角三角形的性质;3.勾股定理;4.相似三角形的判定和性质;5.三角形中线和角平分线的性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=数学公式.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______;
(3)如图,已知数学公式,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为______.

查看答案和解析>>

同步练习册答案