精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,已知AB=2,BC=3,点E为AD边上一动点(不与A、D重合),连接CE,作EF⊥CE交AB边于F
(1)求证:△AEF∽△DCE;
(2)当△ECF∽△AEF时,求AF的长;
(3)在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由.
分析:(1)由矩形的性质得∠A=∠D=90°,则∠AEF+∠AFE=90°,由EF⊥CE,则∠AFE=∠CED,得到∠AFE=∠CED,根据三角形相似的判定即可得到结论;
(2)由△AEF∽△DCE,根据相似的性质得到AF:ED=EF:CE,同理由△ECF∽△AEF得EF:AF=CE:AE,即AF:AE=EF:CE,则AE=ED=
3
2
;再由△AEF∽△DCE,得AF:DE=AE:DC,代值即可求出AF;
(3)讨论:①当AE=DE,点G不存在;②当AE≠DE,存在点G且AG=DE,由△AEF∽△DCE,得AF:DE=AE:DC,当AG=DE,则DG=AE,得到AF:AG=DG:DC,根据三角形相似的判定易得到△AGF∽△DCG.
解答:精英家教网(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;

(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=
3
2

又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:
3
2
=
3
2
:2,
∴AF=
9
8


(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
点评:本题考查了三角形相似的判定与性质:有两组对应角相等的三角形相似;有两组对应边的比相等,且它们的夹角相等的两个三角形相似;相似三角形对应边的比相等.也考查了矩形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案