精英家教网 > 初中数学 > 题目详情

如图,在直径为AB的半圆中,O为圆心,C、D为半圆上的两点,∠COD=50°,则∠CAD的度数为


  1. A.
    20°
  2. B.
    25°
  3. C.
    35°
  4. D.
    50°
B
分析:根据圆周角定理即可求解.
解答:∠CAD=∠COD=×50°=25°.
故选B.
点评:本题考查了圆周角定理,正确理解定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB边上的高h;

(2)设DN=x,当x取何值时,水池DEFN的面积最大?

(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB边上的高h;
(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是

A.       B.      C.      D.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省沭阳银河学校九年级下学期质量检测数学卷 题型:解答题

如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB边上的高h;
(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。

查看答案和解析>>

同步练习册答案