精英家教网 > 初中数学 > 题目详情
(2008•大连)(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;
(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;
(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明;

附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.
【答案】分析:(1)可通过构建全等三角形来求解.分别过G、F作GN∥AD,FM∥CD,那么FM=GN,∠EMF=∠GNH=90°,而∠OGN和∠OFM都是等角的余角,因此三角形EFM和HGN全等,那么可通过全等三角形EFM和HGN来得出GH=EF.
(2)(3)(4)方法同(1)都是分别过G、F作AD、CD的垂线,根据∠GOF=∠A,来得出三角形HGN和EFM中的∠HGN和∠EFM相等,然后再得出全等或相似.
解答:
证明:(1)如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,
则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R
∵∠GOF=∠A=90°,
∴∠OGR=90-∠GRO=90-∠QRF=∠OFM.
∵∠GNH=∠FME=90°,FM=GN,
∴△GNH≌△FME.
∴EF=GH.

(2)如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
在四边形MQND中,∠QMD=∠QND=90°
∴∠ADC+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠A=∠C,AB=BC,
∴FM=AB•sinA=BC•sinC=GH.
∵∠FEM=∠GNH=90°,
∴△GNH≌△FME.
∴EF=GH.

(3)如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
∵∠GOF=∠A=90°,
∴∠OGR=90-∠GRO=90-∠QRF=∠OFM.
∵∠GNH=∠FME=90°,
∴△GNH∽△FME.


附加题
已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.
证明:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
在四边形MQND中,∠QMD=∠QND=90°,
∴∠BDC+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠FEM=∠GNH=90°,
∴△GNH∽△FME.

即GH=mEF.
点评:本题主要考查了全等三角形和相似三角形的判定,构建出相关的三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2008•大连一模)反比例函数y=
k
x
的图象经过点(2,3),则这个反比例函数的解析式为
y=
6
x
y=
6
x

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2008•大连)已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2008•大连)已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2008年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2008•大连)已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省常州市中考数学试卷(解析版) 题型:解答题

(2008•大连)已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案