精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标平面内,已知点A的坐标(-5,0),
(1)图中B点的坐标是
 

(2)点B关于原点对称的点C的坐标是
 
;点A关于y轴对称的点D的坐标是
 

(3)△ABC的面积是
 

(4)在直角坐标平面上找一点E,能满足S△ADE=S△ABC的点E有
 
个;
(5)在y轴上找一点F,使S△ADF=S△ABC,那么点F的所有可能位置是
 
;(用坐标表示,并在图中画出)
分析:(1)根据图示直接写出答案;
(2)关于原点对称的点的横纵坐标与原来的互为相反数;关于y轴对称的点的坐标,纵坐标不变,横坐标互为相反数;
(3)利用勾股定理的逆定理证得△ABC是直角三角形,然后利用直角三角形的面积公式来求三角形ABC的面积;
(4)△ADE与△ABC的一条边的边长,和这条边上的高都相等;
(5)根据三角形的面积公式求得OF的长度即可.
解答:精英家教网解:(1)根据图示知,点B的坐标为(-3,4);?

(2)由(1)知,B(-3,4),
∴点B关于原点对称的点C的坐标是(3,-4);
∵点A的坐标(-5,0),
∴点A关于y轴对称的点D的坐标是(5,0);

(3)由勾股定理求得,AB=2
5
,AC=4
5
,BC=10,
∴AB2+AC2=BC2
∴AB⊥AC,
∴S△ABC=
1
2
AB•AC=
1
2
×2
5
×4
5
=20;

(4)∵S△ADE=S△ABC
∴△ADE与△ABC的一条边的边长,和这条边上的高都相等,
∵在该表格中,符合条件的点E由无数个;
∴能满足S△ADE=S△ABC的点E有无数个;

(5)∵AD=10,
∴S△ADF=
1
2
AD•OF=20,
∴OF=4,
∴点F的所有可能位置是(0,4)或(0,-4);
故答案是:
(1)(-3,4);
(2)(3,-4);(5,0);
(3)20;
(4)无数.(每格1分)
(5)(0,4)或(0,-4).(2分)
点评:本题综合考查了三角形的面积、坐标与图形性质、关于坐标轴对称的点的坐标以及坐标图形变换与旋转.解答此类题目时,要将图形画出来,利用“数形结合”的数学思想解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案