精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N.
(1)求证:四边形DBEC是平行四边形;           
(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.

证明:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,DC=AB.
∵BE=AB,
∴DC=BE.
又∵DC∥BE,
∴四边形DBEC是平行四边形;

(2)∵AD2=AB•AF,

又∵∠A=∠A,
∴△ADB∽△AFD,
∴∠ADB=∠DFA.
∵DC∥AB,
∴∠CDF=∠DFA.
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠ADB=∠DBC.
∵四边形DBEC是平行四边形,
∴CE∥DB,
∴∠MCN=∠DBC,
∴∠MCN=∠CDF.
又∵∠CMN=∠DMC,
∴△CMN∽△CMD,

∵DC=AB,

∴CM•AB=DM•CN.
分析:(1)根据“对边平行且相等的四边形是平行四边形”证得结论;
(2)通过相似三角形△ADB∽△AFD的对应角相等知∠ADB=∠DFA,然后由?ABCD、?DBEC的性质以及等量代换证得△CMN∽△CMD,则该对相似三角形的对应边成比例,即,又因为DC=AB,所以,即CM•AB=DM•CN.
点评:本题考查了平行四边形的判定与性质、相似三角形的判定与性质.三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案