精英家教网 > 初中数学 > 题目详情
探索与研究:
在△ABC中,∠ABC=90°,分别以边AB、BC、CA向△ABC外作正方形ABHI、正方形BCGF、正方形CAED,连接GD、AG、BD.
(1)如图甲,求证:AG=BD.
(2)如图乙,试说明:S△ABC=S△CDG
(提示:正方形的四条边相等,四个角均为直角)
分析:(1)由正方形的性质就可以得出△ACG≌△DCB,就可以得出结论;
(2)延长DC交GF于H,证明△BMC≌△GNC,就可以得出BM=GN,就可以得出结论.
解答:解:(1)∵四边形ABHI、四边形BCGF和四边形CAED都是正方形,
∴AB=BH=HI=AI,BC=CG=GF=BF,AE=DE=CD=AC,∠H=∠I=∠E=∠F=∠IAB=∠ABH=∠FBC=∠BCG=∠FGC=∠BAC=∠ACD=90°.
∴∠ACD+∠ACB=∠BCG+∠ACB,
∴∠DCB=∠ACG.
在△ACG和△DCB中,
AC=DC
∠ACG=∠DCB
BC=GC

∴△ACG≌△DCB(SAS),
∴AG=BD;

(2)如图2,作BM⊥AC于M,GN⊥DC的延长于点N.
∴∠BMC=∠N=90°
∵∠+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
在△BMC和△GNC中,
∠1=∠3
∠BMC=∠N
BC=GC

∴△BMC≌△GNC(SAS),
∴BM=GN,
1
2
AC•BM=
1
2
DC•GN,
∵S△ABC=
1
2
AC•BM,S△DCG=
1
2
DC•GN,
∴S△ABC=S△CDG
点评:本题考查了正方形的性质的运用,三角形全等的判定及性质的运用,三角形的面积公式的运用,在解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图1,在正方形ABCD中,若点E是△DBC内的一点,且DE=DC,BE=CE.
(1)连接AE.说明△ABE≌△DCE的理由;
(2)求∠BDE与∠CDE度数的比值;
(3)拓展探索:若只将题中的条件“正方形ABCD”换成条件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如图2,研究∠BDE与∠CDE度数的比值是否与(2)中的结论相同,写出你的研究结果并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×数学公式ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探索与研究:在△ABC中,∠ABC=90°,分别以边AB、BC、CA向△ABC外作正方形ABHI、正方形BCGF、正方形CAED,连接GD、AG、BD.
(1)如图甲,求证:AG=BD.
(2)如图乙,试说明:S△ABC=S△CDG
(提示:正方形的四条边相等,四个角均为直角)
作业宝

查看答案和解析>>

同步练习册答案