精英家教网 > 初中数学 > 题目详情
如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)试说明:OB∥AC;
(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;
(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.
分析:(1)由同旁内角互补,两直线平行证明.
(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=
1
2
(∠BOF+∠FOA)=
1
2
∠BOA,算出结果.
(3)先得出结论:∠OCB:∠OFB的值不发生变化,理由为:由BC与AO平行,得到一对内错角相等,由∠FOC=∠AOC,等量代换得到一对角相等,再利用外角性质等量代换即可得证;
(4)由(2)(3)的结论可得.
解答:解:(1)∵BC∥OA,
∴∠B+∠O=180°,又∵∠B=∠A,
∴∠A+∠O=180°,
∴OB∥AC;

(2)∵∠B+∠BOA=180°,∠B=100°,
∴∠BOA=80°,
∵OE平分∠BOF,
∴∠BOE=∠EOF,又∵∠FOC=∠AOC,
∴∠EOF+∠FOC=
1
2
(∠BOF+∠FOA)=
1
2
∠BOA=40°;

(3)结论:∠OCB:∠OFB的值不发生变化.理由为:
∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2;

(4)由(1)知:OB∥AC,
则∠OCA=∠BOC,
由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,
则∠OCA=∠BOC=2α+β,
∠OEB=∠EOC+∠ECO=α+β+β=α+2β,
∵∠OEC=∠OCA,
∴2α+β=α+2β,
∴α=β,
∵∠AOB=80°,
∴α=β=20°,
∴∠OCA=2α+β=40°+20°=60.
点评:此题考查了平行线的判定与性质,平移的性质,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图9所示,已知:∠α、线段a,求作等腰三角形△ABC,使腰长AB=a,底角∠A=∠α.(要求写出作法,并保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•义乌市)如图1所示,已知y=
6
x
(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2
3
,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2精英家教网所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?
(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)试说明:△ABC≌△FED;
(2)若图形经过平移和旋转后得到图2,且有∠EDB=25°,∠A=66°,试求∠AMD的度数;
(3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由.

查看答案和解析>>

同步练习册答案