精英家教网 > 初中数学 > 题目详情
阅读材料:设关于x的一元二次方程ax2+bx+c=0的两个实数根分别为x1、x2,则两个实数根与该方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
.根据该材料填空:若关于x的一元二次方程x2+2kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=2x1•x2,则k的值为
3
4
或-1
3
4
或-1
分析:根据根与系数的关系得到x1+x2=-2k,x1•x2=4k2-3,则-2k=2(4k2-3),解方程得到k1=
3
4
,k2=-1,然后利用△来确定k的值.
解答:解:根据题意得x1+x2=-2k,x1•x2=4k2-3,
∵x1+x2=2x1•x2
∴-2k=2(4k2-3),
∴(4k-3)(k+1)=0,
∴k1=
3
4
,k2=-1,
当k=
3
4
和-1时,△≥0,
∴k的值为
3
4
或-1.
故答案为
3
4
或-1.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
x1x2=
c
a
.根据该材料填空:若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2.则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
如果关于x的方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
4ac
4a2
=
c
a

综合得:若方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决问题:
(1)方程x2+bx+c=0的两根为-1和3,求b与c的值;
(2)设方程2x2-3x+1=0的两根为x1,x2,求
1
x1
+
1
x2
以及2x12+2x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1、x2,则x1+x2=-
b
a
x1x2=
c
a

解决下面问题:已知关于x的一元二次方程(2x+n)2=4x有两个非零不等实数根x1、x2,设m=
1
x1
+
1
x2

(1)求n的取值范围;
(2)试用关于n的代数式表示出m;
(3)是否存在这样的n值,使m的值等于1?若存在,求出这样的所有n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

阅读材料:设关于x的一元二次方程ax2+bx+c=0的两个实数根分别为x1、x2,则两个实数根与该方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
.根据该材料填空:若关于x的一元二次方程x2+2kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=2x1•x2,则k的值为______.

查看答案和解析>>

同步练习册答案