11.先阅读第(1)题的解法,再解答第(2)题:
(1)已知a,b是有理数,并且满足等式5-$\sqrt{3}$a=2b+$\frac{2}{3}$$\sqrt{3}$-a,求a,b的值.
解:因为5-$\sqrt{3}$a=2b+$\frac{2}{3}$$\sqrt{3}$-a,即5-$\sqrt{3}$a=(2b-a)+$\frac{2}{3}$$\sqrt{3}$
所以$\left\{\begin{array}{l}2b-a=5\\-a=\frac{2}{3}\end{array}\right.$解得$\left\{\begin{array}{l}a=\frac{2}{3}\\ b=\frac{13}{6}\end{array}\right.$
(2)已知x,y是有理数,并且x,y满足等式x+2y+$\sqrt{2}$y=17+4$\sqrt{2}$,求$\sqrt{x}$-$\sqrt{y}$的值.
分析 观察(1)中的解题过程,将(2)中已知等式变形求出x与y的值,即可求出原式的值.
解答 解:(2)整理得:(x+2y)+$\sqrt{2}$y=17+4$\sqrt{2}$,
可得$\left\{\begin{array}{l}{x+2y=17}\\{y=4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=9}\\{y=4}\end{array}\right.$,
则原式=3-2=1.
点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.