精英家教网 > 初中数学 > 题目详情
如图,中国首个空间实验室“天宫一号”于2011年9月29日成功发射.某科技实验小组也自行设计了火箭,经测试,该种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-t2+10t-15表示,经过______s,火箭达到它的最高点10米处.
∵h=-t2+10t-15=-(t-5)2+10,
∴当t-5=0时,h有最大10米,因此t=5s,
∴经过5s,火箭达到它的最高点10米处.
故答案为:5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-
1
2
x+b(b>0)
分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.
(1)求点P的坐标.
(2)若点P关于x轴的对称点为P′,试求经过M、N、P′三点的抛物线的解析式.
(3)当b值由小到大变化时,求S与b的函数关系式.
(4)若在直线y=-
1
2
x+b(b>0)
上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在第一象限内,以
5
为半径的圆⊙M经过点A(-1,0),B(3,0),与y轴相交于点C.
(1)在所给的坐标系中作出⊙M,并求M点的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)若D为⊙M上的最低点,E为x轴上的任一点,则在抛物线上是否存在这样的点F,使得以点A、D、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-
1
2
x+1
交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为60cm的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A、B、C、D四个点重合于图中的点P,正好形成一个底面是正方形的长方体包装盒.
(1)若折叠后长方体底面正方形的面积为1250cm2,求长方体包装盒的高;
(2)设剪掉的等腰直角三角形的直角边长为x(cm),长方体的侧面积为S(cm2),求S与x的函数关系式,并求x为何值时,S的值最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.
(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?
(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在一边靠墙(墙足够长)用120m篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是______m、______m.

查看答案和解析>>

同步练习册答案