精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,AB为⊙O的弦,OD⊥AB,垂足为点D,DO的延长线交⊙O于点C.过点C作CE⊥AO,分别与AB、AO的延长线相交于E、F两点.CD=8,sin∠A=数学公式
求:(1)弦AB的长;
(2)△CDE的面积.

解:(1)设⊙O的半径OA=r,
则OD=CD-OC=8-r.
∵OD⊥AB,
∴∠ADO=90°.
∵在Rt△AOD中,sin∠A==

解得:r=5,
∴OA=5,OD=3.
利用勾股定理,得:AD==4,
∵OD⊥AB,O为圆心,
∴AB=2AD=8;

(2)∵CE⊥AO,
∴∠AFE=∠CDE=90°.
∴∠A+∠E=90°,∠C+∠E=90°,
∴∠A=∠C,
又∵∠ADO=∠CDE=90°,
∴△AOD∽△CED.
==
∵S△ACD=AD•OD=×4×3=6,
∴S△CDE=4S△ACD=24.
分析:(1)首先设⊙O的半径OA=r,那么OD=8-r.由OD⊥AB,得∠ADO=90°.于是由在Rt△AOD中,sin∠A==,可得.继而求得r的长,然后由垂径定理,求得弦AB的长;
(2)易证得△AOD∽△CED,然后由相似三角形面积的比等于相似比的平方,求得△CDE的面积.
点评:此题考查了垂径定理、相似三角形的判定与性质、勾股定理、直角三角形的性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东阳市模拟)已知:如图,AB为⊙O的直径,AC、BC为弦,点P为⊙O上一点,弧AC=弧AP,AB=10,tanA=
3

(1)求PC的长;
(2)过P作⊙O切线交BA延长线于E,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O直径,AC为弦,M为弧AC上一点,若∠CAB=40度,则∠AMC的度数为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①
AD
=
DC
;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,AO为⊙O'的直径,⊙O的弦AC交⊙O'于D点,OC和BD相交于E点,AB=4,∠CAB=30°.求CE、DE的长.

查看答案和解析>>

同步练习册答案