精英家教网 > 初中数学 > 题目详情
已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?
问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
解:问题1:对角线PQ与DC不可能相等。理由如下:
∵四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,
∴∠DPC=90°。
∵AD=1,AB=2,BC=3,∴DC=2
设PB=x,则AP=2-x,
在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2-x)2+12=8,化简得x2-2x+3=0,
∵△=(-2)2-4×1×3=-8<0,∴方程无解。
∴不存在PB=x,使∠DPC=90°。∴对角线PQ与DC不可能相等。
问题2:存在。理由如下:
如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,
则G是DC的中点。过点Q作QH⊥BC,交BC的延长线于H。

∵AD∥BC,∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH。
∵PD∥CQ,∴∠PDC=∠DCQ。∴∠ADP=∠QCH。
又∵PD=CQ,∴Rt△ADP≌Rt△HCQ(AAS)。∴AD=HC。
∵AD=1,BC=3,∴BH=4,
∴当PQ⊥AB时,PQ的长最小,即为4。
问题3:存在。理由如下:
如图3,设PQ与DC相交于点G,

∵PE∥CQ,PD=DE,∴
∴G是DC上一定点。
作QH⊥BC,交BC的延长线于H,
同理可证∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ。∴
∵AD=1,∴CH=2。∴BH=BG+CH=3+2=5。
∴当PQ⊥AB时,PQ的长最小,即为5。
问题4:如图3,设PQ与AB相交于点G,
∵PE∥BQ,AE=nPA,∴
∴G是DC上一定点。
作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K。

∵AD∥BC,AB⊥BC,
∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°
∠PAG=∠QBG,
∴∠QBH=∠PAD。∴△ADP∽△BHQ,∴
∵AD=1,∴BH=n+1。∴CH=BH+BC=3+n+1=n+4。
过点D作DM⊥BC于M,则四边形ABND是矩形。
∴BM=AD=1,DM=AB=2。∴CM=BC-BM=3-1=2=DM。
∴∠DCM=45°。∴∠KCH=45°。
∴CK=CH•cos45°= (n+4),
∴当PQ⊥CD时,PQ的长最小,最小值为 (n+4)。
反证法,相似三角形的判定和性质,一元二次方程根的判别式,全等三角形的判定和性质,勾股定理,平行四边形、矩形的判定和性质,等腰直角三角形的判定和性质。
问题1:四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,然后利用矩形的性质,设PB=x,可得方程x2+32+(2-x)2+1=8,由判别式△<0,可知此方程无实数根,即对角线PQ,DC的长不可能相等。
问题2:在平行四边形PCQD中,设对角线PQ与DC相交于点G,可得G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH=4,则可得当PQ⊥AB时,PQ的长最小,即为4。
问题3:设PQ与DC相交于点G,PE∥CQ,PD=DE,可得,易证得Rt△ADP∽Rt△HCQ,继而求得BH的长,即可求得答案。
问题4:作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,易证得与△ADP∽△BHQ,又由∠DCB=45°,可得△CKH是等腰直角三角形,继而可求得CK的值,即可求得答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在梯形ABCD中,AD // BCEF分别为边ABDC的中点,CG // DE,交EF的延长线于点G

(1)求证:四边形DECG是平行四边形;
(2)当ED平分∠ADC时,求证:四边形DECG是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果 等于(  )                                                            
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,对角线AC=8cm,rAOB是等边三角形,则AD的长为      cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果,则 等于(  )                                                             
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,∠DAB =∠BCD = 90°,分别以四边形的四条边为边向外作四个正方形,若S1 + S4 = 100,S3 = 36,则S2 =(   )
A.136B.64C.50D.81

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°- ∠FCM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,∠DCE=900,DE=,BE=2.求CD的长和四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知梯形ABCD,AD∥BC,BC=2AD,如果那么=  (用表示).

查看答案和解析>>

同步练习册答案