精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB于点B,G是直线CD上一点,∠ADG=∠ABD,ADCE.
(1)求证:AD•CE=DE•DF.
(2)若∠DAE=30°,BC=2,AD=
5
2
,AE:BE=2:3,求
BD
的长.
(1)证明:连接AF,OB,
∵DF是⊙O的直径,
∴∠DAF=90°,
∵∠ADG=∠ABD,
而∠F=∠ABD.
∴∠ADG=∠F,
∵∠F+∠1=90°,
∴∠ADG+∠1=90°,
∴CG是⊙O的切线.
∴∠CDE=90°,
∵ADCE,
∴∠1=∠2,
∴△ADF△DEC,
AD
DF
=
DE
CE

即AD•CE=DE•DF.

(2)∵ADCE,∠DAE=30°,
∴∠CEB=∠DAE=30°,
在Rt△EBC中,∵BC=2,
∴CE=4,BE=2
3

∵AE:BE=2:3,
∴AE=
4
3
3

设DE=x,DF=y
∵AD•CE=DE•DF,AD=
5
2

∴xy=10,
∵由AE•BE=DE•EF,得
4
3
3
×2
3
=x(y-x),
解得x2=2,
x=
2

∴y=5
2

连接OB,于是∠DOB=60°,
BD
的长为
60π×
5
2
2
180
=
5
2
π
6

答:
BD
的长为
5
2
π
6

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D点,则DF的长为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

设计一把直尺ABC,BC在地面上,AB与地面垂直,并且AB=10cm,移动一个半径不小于10cm的圆形轮子,使轮子紧靠A点,且与BC相切于D点(如图).设计要求在D处的刻度恰好显示这个轮子的半径(以厘米为单位).那么,当BC的长度为1M时,BC上可标出的最大刻度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于(  )
A.
3
2
B.
2
2
C.
2
3
3
D.
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)若AC=3,求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切,且AB=8,两个圆的半径相差2,那么大圆的直径为(  )
A.3B.5C.6D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在△ABC中,∠ABC=30°,BC=4
3
,AB=4,以AB长为直径作⊙O交BC于点D.
(1)试判断△ABC的形状,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是半圆的直径,O是圆心,C是AB延长线上一点,CD切半圆于D,DE⊥AB于E.已知AE:EB=4:1,CD=2,求BC的长.

查看答案和解析>>

同步练习册答案