已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点
是抛物线上的一点,求△ABD的面积.
科目:初中数学 来源: 题型:解答题
在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线
与
轴相交于
,
两点(点
在点
的左侧),与
轴相交于点
.![]()
(1)点
的坐标为 ,点
的坐标为 ;
(2)在
轴的正半轴上是否存在点
,使以点
,
,
为顶点的三角形与
相似?若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b= ,c= ;
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;
| x | … | | | | | | … |
| y | … | | | | | | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。![]()
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数y1=ax2+bx-3的图象经过点A(2,-3),B(-1,0),与y轴交于点C,与x轴另一交点交于点D.![]()
(1)求二次函数的解析式;
(2)求点C、点D的坐标;
(3)若一条直线y2,经过C、D两点,请直接写出y1>y2时,
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边
在同一直线
上,且点
与点
重合。现固定
,将
以每秒1个单位长度的速度在
上向右平移,当点
与点
重合时运动停止。设平移时间为
秒。![]()
(1)当
为 秒时,
边恰好经过点
;当
为 秒时,运动停止;
(2)在
平移过程中,设
与
重叠部分的面积为
,请直接写出
与
的函数关系式,并写出
的取值范围;
(3)当
停止运动后,如图2,
为线段
上一点,若一动点
从点
出发,先沿
方向运动,到达点
后再沿斜坡
方向运动到达点
,若该动点
在线段
上运动的速度是它在斜坡
上运动速度的2倍,试确定斜坡
的坡度,使得该动点从点
运动到点
所用的时间最短。(要求,简述确定点
位置的方法,但不要求证明。)![]()
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).![]()
(1)请直接写出点B,C的坐标:B( , ),C( , );
(2)求经过A,B,C三点的抛物线解析式;
(3)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A,B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(2)中的抛物线交于第一象限的点M.当AE=2时,抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com