精英家教网 > 初中数学 > 题目详情
阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.

【答案】分析:(1)小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
(2)首先得出∠BDC=180°-∠BCD-∠DBC=90° 同理可得:∠ACB=30°,进而得出OB=OC由结论可得:EM+EN=CD=2.
解答:解:(1)证明:小明的思路方法:
过点P作PG⊥CD于G(如图1),
∵CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
∴四边形PEDG是矩形,
∴PE=DG
∵△ABC中,AB=AC,
∴△PCG≌△CPF,
∴PF=CG,
∴CD=PE+PF.

(2)设AC、BD交于O,
∵梯形ABCD中,AB=CD
∴梯形ABCD是等腰梯形
∴∠DCB=∠ABC=60°
∵AD∥BC
∴∠ADC=180-∠BCD=120°,∠ADB=∠DBC
∵AD=AB
∴∠ABD=∠ADB
∴∠DBC=∠ABD=∠ADB=30°
∴∠BDC=180°-∠BCD-∠DBC=90°
同理可得:∠ACB=30°
∴∠ACB=∠DBC
∴OB=OC
由结论可得:EM+EN=CD=2.
点评:本题综合性较强,主要考查梯形的性质,三角形面积,全等三角形的判定与性质,等腰三角形的性质等知识点,有一定的拔高难度,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012届广东珠海紫荆中学九年级中考三模数学试卷(带解析) 题型:解答题

阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数, a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.
【小题1】填空:i3=_____,i4="_______" ;
【小题2】计算:①;②
【小题3】若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:
已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.
【小题4】试一试:请利用以前学习的有关知识将化简成a+bi的形式

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东珠海紫荆中学九年级中考三模数学试卷(解析版) 题型:解答题

阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数, a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.

1.填空:i3=_____,i4=_______ ;

2.计算:①;②

3.若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:

已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.

4.试一试:请利用以前学习的有关知识将化简成a+bi的形式

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.

查看答案和解析>>

同步练习册答案