精英家教网 > 初中数学 > 题目详情

在计算3+5+7+9+11+13+15+17+19+21时,我们发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的定值.具有这种规律的一列数,除了直接相加外,我们还可以用公式数学公式来计算它们的和(公式中的n表示数的个数,a表示第一个数的值,d表示这个相差的定值).
用上面的知识解决下列问题:
森林能减少水土流失,净化空气,某县决定对原有的坡荒地进行退耕还林.从2007年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地.由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为2007、2008、2009三年的坡荒地面积和植树的面积的统计数据.假设坡荒地全部都种上树后,不再水土流失形成新的坡荒地,问:到哪一年可以将全县所有的坡荒地全部种上树木.


  1. A.
    2015
  2. B.
    2016
  3. C.
    2017
  4. D.
    2018
B
分析:设从2007年开始经过n年可以将全县所有的坡荒地全部种上树木,根据表格知道每年又以比上一年多植400亩,所以d=400,a=1000,根据阅读材料可以得到方程25000=1400n+×400,解方程即可求出经过.
解答:从表中可知,2007年植树1000公顷,以后每年均比上一年多植树400公顷.
2007年实有坡荒地25200公顷.
种树1400公顷后,实有坡荒地只减少丁25200-24000=1200(公顷),
因此,每年新产生的坡荒地为200公顷,即树木实际存活1200公顷.
设从2008年起(2008年算第1年),n年全县的坡荒地全部植树,
有1400n+×400-200n≥25200.
即:n2+5n≥126.
估算:当n=8时,82+5×8=104≤126.
当n=9时,92+5×9=126.
故到2016年,可将全县所有的坡荒地全部种上树木.
故选B.
点评:这是一道新颖独特的阅读题,它的基本形式可归纳为:“阅读--理解--应用”,解题时应抓住三点:(1)读:读懂材料,读懂表格;(2)用:把阅读材料提供的结论正确地套用于解题中;(3)活:指解题时的计算,对n2+5n≥126这样的不等式,用估算法求年数n.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我校一名学生在计算
x2-2x+1
x2-1
÷
x-1
x2+x
-x 的值时,把x=2011错抄成2101,但他的计算结果却是正确的,你帮他分析判断一下.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列分母有理化的计算:
1
2
+1
=
2
-1
1
3
+
2
=
3
-
2
1
4
-
3
=
4
-
3
1
5
+
4
=
5
-
4
,…
在计算结果中找出规律,用含有字母n(n表示大于0的自然数)表示;再利用这一规律计算以下列式子的值:
1
2
+
1
+
1
3
+
2
+
1
4
+
3
+…
+
1
2010
+
2009
)(
2010
+1
)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在计算一个正整数乘以3.5
7
的运算时,某同学误将3.5
7
错写为3.57,结果与正确答案相差14,则正确的乘积是
6440
6440

查看答案和解析>>

科目:初中数学 来源: 题型:

小马虎在计算41-N时.误将“-”看成“+”,结果得13,则41-N的值应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在计算某n边形的内角和时,不小心少输入一个内角,得到和为2013°.则n等于(  )

查看答案和解析>>

同步练习册答案