精英家教网 > 初中数学 > 题目详情
抛物线y=ax2-2ax+b(a>0)交x轴于A,B两点,交y轴于C;且满足OA•OB-OC=0,若C(0,-3)
(1)求这个抛物线的解析式;
(2)若抛物线的顶点为M,将此抛物线顶点沿直线y=-x-3平移,平移后的抛物线与x轴交于A′、B′两点  若2≤A′B′≤6,试求出点M的横坐标的取值范围;
(3)过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=
2
t,且0<t<1.依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
精英家教网
分析:(1)设A点坐标为(x1,0),(x2,0),利用图象求出b的值,根据根与系数的关系求出a的值,即可求出函数解析式.
(2)设出M点坐标,得到平移后的抛物线,根据根与系数的关系求出m的取值范围.
(3)先假设存在,根据相似三角形的性质求出t的值即存在,若不存在t,则不存在.
解答:解:(1)设A点坐标为(x1,0),(x2,0).
∵OA•OB-OC=0,
∴|x1x2|-3=0,
则|x1x2|=3,
又∵x1<0,x2>0,
∴x1x2<3,
b
a
<3,
又∵b=-3,
-3
a
=-3,
∴a=1,
故函数解析式为y=x2-2x-3.

(2)设M(m,-m-3),平移后抛物线y=(x-m)2-m-3,
当A′B′=2时利用根与系数关系可得M点横坐标x=-2,
当A′B′=6时利用根与系数关系可得M点横坐标x=6,
故-2≤x≤6.

(3)当H在QB之间:
①△COQ∽△QHP,t=
9
20

②△COQ∽△PHQ,t=
-15+3
41
8

当H在OQ之间:
∵PH∥OQ,
∴当Q与B重合时,△COQ∽△PHQ,t=
3
4
点评:此题考查了抛物线与直线的性质及相似三角形的性质和根与系数的关系,综合性较强,解答时要注意数形结合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点(2,8)在抛物线y=ax2上,则a的值为(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案