精英家教网 > 初中数学 > 题目详情
如图∠1=82°,∠2=98°,∠3=80°,则∠4=
80
80
度.
分析:先根据邻补角的定义求出∠1的邻补角,再根据同位角相等,两直线平行求出a∥b,然后根据两直线平行,内错角相等求解即可.
解答:解:如图,∵∠1=82°,
∴∠5=180°-82°=98°,
∵∠2=98°
∴∠2=∠5,
∴a∥b,
∴∠3=∠4,
∵∠3=80°,
∴∠4=80°.
故答案为:80.
点评:本题考查了平行线的性质与判定,先求出∠1的邻补角与∠2相等,判断出a∥b是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:在△ABC中,∠BAC=75°,∠ACB=60°,AB=8
2
,求:BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安庆二模)一个几何体的三视图如图所示,若其俯视图为正方形,则这个几何体的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.则∠C的度数是
83°
83°

查看答案和解析>>

同步练习册答案