£¨2011ËÄ´¨ÄÚ½­£¬¼ÓÊÔ5£¬12·Ö£©Í¬Ñ§ÃÇ£¬ÎÒÃÇÔø¾­Ñо¿¹ýn¡ÁnµÄÕý·½ÐÎÍø¸ñ£¬µÃµ½ÁËÍø¸ñÖÐÕý·½ÐεÄ×ÜÊýµÄ±í´ïʽΪ12+22+32+¡­+n2£®µ«nΪ100ʱ£¬Ó¦ÈçºÎ¼ÆËãÕý·½ÐεľßÌå¸öÊýÄØ?ÏÂÃæÎÒÃǾÍÒ»ÆðÀ´Ì½¾¿²¢½â¾öÕâ¸öÎÊÌ⣮Ê×ÏÈ£¬Í¨¹ý̽¾¿ÎÒÃÇÒѾ­ÖªµÀ0¡Á1+1¡Á2+2¡Á3+¡­+(n¡ª1)¡Án=n(n+1)(n¡ª1)ʱ£¬ÎÒÃÇ¿ÉÒÔÕâÑù×ö£º
(1)¹Û²ì²¢²ÂÏ룺
12+22=(1+0)¡Á1+(1+1)¡Á2=1+0¡Á1+2+1¡Á2=(1+2)+(0¡Á1+1¡Á2)
12+22+32=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3
=1+0¡Á1+2+1¡Á2+3+2¡Á3
=(1+2+3)+(0¡Á1+1¡Á2+2¡Á3)
12+22+32+42=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+               
=1+0¡Á1+2+1¡Á2+3+2¡Á3+                        
=(1+2+3+4)+(                                  )
¡­¡­
(2)¹éÄɽáÂÛ£º
12+22+32+¡­+n2=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+¡­+n
=1+0¡Á1+2+1¡Á2+3+2¡Á3+¡­+n+(nÒ»1)¡Án
=(                      ) +
=                      +                                 
=¡Á                     
(3)ʵ¼ùÓ¦Óãº
ͨ¹ýÒÔÉÏ̽¾¿¹ý³Ì£¬ÎÒÃǾͿÉÒÔËã³öµ±nΪ100ʱ£¬Õý·½ÐÎÍø¸ñÖÐÕý·½ÐεÄ×ܸöÊýÊÇ              £®
£¨1+3£©¡Á4
4+3¡Á4
0¡Á1+1¡Á2+2¡Á3+3¡Á4
1+2+3+¡­+n
0¡Á1+1¡Á2+2¡Á3++¡­+(n£­1)¡Án

n(n+1)(n¡ª1)
n(n+1)(2n+1)½âÎö:
ÂÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011ËÄ´¨ÄÚ½­£¬17£¬7·Ö£©¼ÆË㣺

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ѧÄêÈ˽̰æÖп¼ÊýѧµÚÒ»ÂÖ¸´Ï°ÓÐÀíÊýרÏîѵÁ· ÌâÐÍ£º½â´ðÌâ

£¨2011ËÄ´¨ÄÚ½­£¬¼ÓÊÔ5£¬12·Ö£©Í¬Ñ§ÃÇ£¬ÎÒÃÇÔø¾­Ñо¿¹ýn¡ÁnµÄÕý·½ÐÎÍø¸ñ£¬µÃµ½ÁËÍø¸ñÖÐÕý·½ÐεÄ×ÜÊýµÄ±í´ïʽΪ12+22+32+¡­+n2£®µ«nΪ100ʱ£¬Ó¦ÈçºÎ¼ÆËãÕý·½ÐεľßÌå¸öÊýÄØ?ÏÂÃæÎÒÃǾÍÒ»ÆðÀ´Ì½¾¿²¢½â¾öÕâ¸öÎÊÌ⣮Ê×ÏÈ£¬Í¨¹ý̽¾¿ÎÒÃÇÒѾ­ÖªµÀ0¡Á1+1¡Á2+2¡Á3+¡­+(n¡ª1)¡Án=n(n+1)(n¡ª1)ʱ£¬ÎÒÃÇ¿ÉÒÔÕâÑù×ö£º
(1)¹Û²ì²¢²ÂÏ룺
12+22=(1+0)¡Á1+(1+1)¡Á2=1+0¡Á1+2+1¡Á2=(1+2)+(0¡Á1+1¡Á2)
12+22+32=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3
=1+0¡Á1+2+1¡Á2+3+2¡Á3
=(1+2+3)+(0¡Á1+1¡Á2+2¡Á3)
12+22+32+42=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+               
=1+0¡Á1+2+1¡Á2+3+2¡Á3+                        
=(1+2+3+4)+(                                  )
¡­¡­
(2)¹éÄɽáÂÛ£º
12+22+32+¡­+n2=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+¡­+n
=1+0¡Á1+2+1¡Á2+3+2¡Á3+¡­+n+(nÒ»1)¡Án
=(                      ) +
=                      +                                 
=¡Á                     
(3)ʵ¼ùÓ¦Óãº
ͨ¹ýÒÔÉÏ̽¾¿¹ý³Ì£¬ÎÒÃǾͿÉÒÔËã³öµ±nΪ100ʱ£¬Õý·½ÐÎÍø¸ñÖÐÕý·½ÐεÄ×ܸöÊýÊÇ              £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ѧÄêÈ˽̰æÖп¼ÊýѧµÚÒ»ÂÖ¸´Ï°ÓÐÀíÊýרÏîѵÁ· ÌâÐÍ£º½â´ðÌâ

£¨2011ËÄ´¨ÄÚ½­£¬¼ÓÊÔ5£¬12·Ö£©Í¬Ñ§ÃÇ£¬ÎÒÃÇÔø¾­Ñо¿¹ýn¡ÁnµÄÕý·½ÐÎÍø¸ñ£¬µÃµ½ÁËÍø¸ñÖÐÕý·½ÐεÄ×ÜÊýµÄ±í´ïʽΪ12+22+32+¡­+n2£®µ«nΪ100ʱ£¬Ó¦ÈçºÎ¼ÆËãÕý·½ÐεľßÌå¸öÊýÄØ?ÏÂÃæÎÒÃǾÍÒ»ÆðÀ´Ì½¾¿²¢½â¾öÕâ¸öÎÊÌ⣮Ê×ÏÈ£¬Í¨¹ý̽¾¿ÎÒÃÇÒѾ­ÖªµÀ0¡Á1+1¡Á2+2¡Á3+¡­+(n¡ª1)¡Án=n(n+1)(n¡ª1)ʱ£¬ÎÒÃÇ¿ÉÒÔÕâÑù×ö£º
(1)¹Û²ì²¢²ÂÏ룺
12+22=(1+0)¡Á1+(1+1)¡Á2=1+0¡Á1+2+1¡Á2=(1+2)+(0¡Á1+1¡Á2)
12+22+32=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3
=1+0¡Á1+2+1¡Á2+3+2¡Á3
=(1+2+3)+(0¡Á1+1¡Á2+2¡Á3)
12+22+32+42=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+               
=1+0¡Á1+2+1¡Á2+3+2¡Á3+                        
=(1+2+3+4)+(                                  )
¡­¡­
(2)¹éÄɽáÂÛ£º
12+22+32+¡­+n2=(1+0)¡Á1+(1+1)¡Á2+(1+2)¡Á3+¡­+n
=1+0¡Á1+2+1¡Á2+3+2¡Á3+¡­+n+(nÒ»1)¡Án
=(                      ) +
=                      +                                 
=¡Á                     
(3)ʵ¼ùÓ¦Óãº
ͨ¹ýÒÔÉÏ̽¾¿¹ý³Ì£¬ÎÒÃǾͿÉÒÔËã³öµ±nΪ100ʱ£¬Õý·½ÐÎÍø¸ñÖÐÕý·½ÐεÄ×ܸöÊýÊÇ              £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ѧÄêÈ˽̰æÖп¼ÊýѧµÚÒ»ÂÖ¸´Ï°ÓÐÀíÊýרÏîѵÁ· ÌâÐÍ£ºÑ¡ÔñÌâ

 £¨2011ËÄ´¨ÄÚ½­£¬3£¬3·Ö£©Ä³ºìÍâÏßÒ£¿ØÆ÷·¢³öµÄºìÍâÏß²¨³¤Îª0.000 000 94m£¬ÓÿÆѧ¼ÇÊý·¨±íʾÕâ¸öÊýÊÇ£¨   £©

A£®9.4¡Á10£­7 m    B£®9.4¡Á107m    C£®9.4¡Á10£­8m     D£®9.4¡Á108m

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ѧÄêÈ˽̰æÖп¼ÊýѧµÚÒ»ÂÖ¸´Ï°·ÖʽרÏîѵÁ· ÌâÐÍ£ºÑ¡ÔñÌâ

£¨2011ËÄ´¨ÄÚ½­£¬15£¬5·Ö£©Èç¹û·ÖʽµÄֵΪ0£¬ÔòxµÄֵӦΪ               £®

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸