精英家教网 > 初中数学 > 题目详情

作业宝如图,AB∥CD,∠BAE=∠DCE=45°.
填空:∵AB∥CD
∴∠CAE+45°+∠ACE+45°=________.                                                             
∴∠CAE+∠ACE=________.
∴∠E=________.

180°    90°    90°
分析:根据平行线的性质可得∠CAE+45°+∠ACE+45°=180°,再化简可得∠CAE+∠ACE=90°,然后再根据三角形内角和可得∠E=90°.
解答::∵AB∥CD
∴∠CAE+45°+∠ACE+45°=180°;
∴∠CAE+∠ACE=90°;
∴∠E=90°.
点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案