精英家教网 > 初中数学 > 题目详情
(2012•包头)如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为2,则BC的长为
2
3
2
3
(保留根号).
分析:首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.
解答:解:过点O作OD⊥BC于D,
则BC=2BD,
∵△ABC内接于⊙O,∠BAC=60°,
∴∠BOC=2∠A=120°,
∵OB=OC,
∴∠OBC=∠OCB=
180°-∠BOC
2
=30°,
∵⊙O的半径为2,
∴BD=OB•cos∠OBC=2×
3
2
=
3

∴BC=2
3

故答案为:2
3
点评:此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•包头)如图,拦水坝的横断面为梯形ABCD,坝顶宽AD=5米,斜坡AB的坡度i=1:3(指坡面的铅直高度AE与水平宽度BE的比),斜坡DC的坡度i=1:1.5,已知该拦水坝的高为6米.
(1)求斜坡AB的长;
(2)求拦水坝的横断面梯形ABCD的周长.
(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,直线y=
1
2
x-2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为-1,点D在反比例函数y=
k
x
的图象上,CD平行于y轴,S△OCD=
5
2
,则k的值为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O,则过A1,B两点的直线解析式为
y=3x+5
y=3x+5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,将△ABC纸片的一角沿DE向下翻折,使点A落在BC边上的A′点处,且DE∥BC,下列结论:
①∠AED=∠C;②
A′D
DB
=
A′E
EC
;③BC=2DE;④S四边形ADA′E=S△DBA′+S△EA′C
其中正确结论的个数是
4
4
个.

查看答案和解析>>

同步练习册答案