精英家教网 > 初中数学 > 题目详情

如图,点D、E分别在∠ABC的边BC、AB上,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,设∠ABC=θ,那么θ=________°.

18
分析:首先连接DE,CE,由AE=CE=DE,DE=DB,根据等边对等角与三角形外角的性质,可求得∠ECA=∠A=63°,∠ECD=2θ,又由三角形内角和定理,可得方程63+63+2θ+θ=180,继而求得答案.
解答:解:连接DE,CE,
∵AE=CE=DE,
∴∠ECA=∠A=63°,∠ECD=∠EDC,
∵DE=DB,
∴∠DEB=∠DBE=θ,
∴∠EDC=∠DEB+∠DBE=2θ,
∴∠ECD=2θ,
∵∠A+∠ACD+∠ABC=180°,
∴63+63+2θ+θ=180,
解得:θ=18°.
故答案为:18°.
点评:此题考查了等腰三角形、三角形外角的性质以及三角形内角和定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0 ).若直线AB为一次函数y=kx+m的图象,则当
b
a
是整数时,满足条件的整数k的值共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,点M、N分别在正三角形ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求∠AQN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点D、E分别在∠BAC的边上,连接DC、BE,若∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B分别在直线l1、l2上,过点A作到l2的距离AM,过点B作直线l3∥l1

查看答案和解析>>

同步练习册答案