精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠BCD=120°,BC=CD.
(1)求证:CD∥AB;
(2)求S△ACD:S△ABC的值.
分析:(1)根据圆周角定理得∠ACB=90°,则∠ACD=30°,利用圆内角四边形的性质得∠DAB=60°,由于BC=CD,所以弧BC=弧CD,则∠DAC=∠BAC=30°,
于是可计算出∠B=60°,则∠B+∠BCD=180°,根据平行线的判定即可得到CD∥AB;
(2)连结OA、OB,根据圆周角定理得∠DOC=2∠DAC=60°,则△ODC为等边三角形,易得△OBC为等边三角形,再利用AB∥CD得S△ADC=S△ODC
而S△OBC=S△ODC,S△ABC=2S△OBC,即可计算出S△ACD:S△ABC的值.
解答:解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BCD=120°,
∴∠ACD=30°,∠DAB=180°-∠BCD=60°,
∵BC=CD,
∴弧BC=弧CD,
∴∠DAC=∠BAC=
1
2
×60°=30°,
∴∠B=90°-∠BAC=60°,
∴∠B+∠BCD=180°,
∴CD∥AB;

(2)连结OA、OB,如图,
∵∠DOC=2∠DAC=60°,
∴△ODC为等边三角形,
而∠B=60°,
∴△OBC为等边三角形,
∵AB∥CD,
∴S△ADC=S△ODC
而S△OBC=S△ODC,S△ABC=2S△OBC
∴S△ACD:S△ABC=1:2.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等边三角形的判定与性质以及圆内接四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案