精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长;
(3)求过A、D两点的直线的解析式.

解:(1)∵△AOB是边长为2的等边三角形,
∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,
又△DCB是由△AOB绕着点B按顺时针方向旋转得到的,
∴△DCB也是边长为2的等边三角形,
∴∠OBA=∠CBD=60°,OB=AB,BC=BD,
又∠OBC=∠OBA+∠ABC=∠CBD+∠ABC=∠ABD
∴△OBC≌△ABD(SAS),
∴OC=AD(全等三角形的对应边相等),

(2)如图1,作CF⊥OD交x轴于点F,则F为BD的中点,
∴BF=1,
在Rt△BCF中,BC=2,BF=1,
由勾股定理得:CF2=BC2-BF2=4-1=3,
CF=
在Rt△OCF中,OF=OB+BF=2+1=3,
由勾股定理得:OC2=OF2+CF2=9+3=12,
∴OC==2

(3)作AE⊥OB交x轴于点E,则E为OB的中点,
∴OE=1,AE=CF=
∴A点的坐标是(1,)又OD=OB+BD=2+2=4,
故D点的坐标是(4,0).
设过A、D两点的直线的解析式为y=kx+b,将A,D点的坐标代入得:

解得:
∴过A、D两点的直线的解析式为y=-x+
分析:(1)利用△DCB是由△AOB绕着点B按顺时针方向旋转得到的,得出△DCB也是边长为2的等边三角形,进而求出△OBC≌△ABD即可得出答案;
(2)作CF⊥OD交x轴于点F.由勾股定理得:CF2=BC2-BF2,求出CF,进而得出CO.
(3)首先求出A,D两点的坐标,进而得出直线AD的解析式即可.
点评:此题主要考查了等边三角形的性质以及全等三角形的判定和旋转的性质、待定系数法求一次函数解析式,正确利用图形上点的坐标得出解析式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案